Những câu hỏi liên quan
Nguyễn Thiều Công Thành
Xem chi tiết
Lizy
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 lúc 22:38

Trước hết theo BĐT Schur bậc 3 ta có:

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc\ge2\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\) (do \(a+b+c=3\)) (1)

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)^2}{a^2c^2+2ab^2c}\)

\(\Rightarrow P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)

Áp dụng (1):

\(\Rightarrow P\ge\dfrac{\left[2\left(ab+bc+ca\right)\right]^2}{\left(ab+bc+ca\right)^2}=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (1)
Neet
Xem chi tiết
Nguyễn Hà Vy
Xem chi tiết
Hoàng Nguyễn Văn
8 tháng 8 2019 lúc 16:14

Ta có a^2 +1 =a^2+ab+bc+ca=a(a+b)+c(a+b)=(a+b)(a+c) 

    tương tự: b^2+1=(b+a)(b+c) ; c^2+1=(c+a)(c+b)

=> (a^2+1)(b^2+1)(c^2+1)=(a+b^2(b+c)^2(c+a)^2

Bình luận (0)
tth_new
8 tháng 8 2019 lúc 16:14

Xét:

\(a^2+1=a^2+ab+bc+ca=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)

Tương tự hai đẳng thức còn lại rồi nhân theo vế ta thu được đpcm.

Bình luận (0)
Vô Danh
Xem chi tiết
❤️ HUMANS PLAY MODE ❤️
30 tháng 4 2020 lúc 20:37

cố quá = quá cố

Bình luận (0)
 Khách vãng lai đã xóa
Vũ Tiền Châu
Xem chi tiết
GV
Xem chi tiết
Akai Haruma
28 tháng 1 2023 lúc 12:52

Lời giải:

Đặt $a+b+c=x; ab+bc+ac=y$. Khi đó:
\(A=\frac{(x^2-2y)x^2+y^2}{x^2-y}=\frac{(x^2-y)x^2+y^2-x^2y}{x^2-y}\)

\(=\frac{(x^2-y)x^2-y(x^2-y)}{x^2-y}=\frac{(x^2-y)(x^2-y)}{x^2-y}=x^2-y\)

$=(a+b+c)^2-(ab+bc+ac)=a^2+b^2+c^2+ab+bc+ac$

Bình luận (0)
Vũ Đình Thái
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 12 2020 lúc 20:41

\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)}{a^2c^2+2ab^2c}\)

\(P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)

\(P\ge\dfrac{\left[a^2+b^2+c^2+3abc\right]^2}{\left(ab+bc+ca\right)^2}\)

Do đó ta chỉ cần chứng minh \(\dfrac{a^2+b^2+c^2+3abc}{ab+bc+ca}\ge2\)

Ta có: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow3abc\ge4\left(ab+bc+ca\right)-9\)

\(\Rightarrow\dfrac{a^2+b^2+c^2+3abc}{ab+bc+ca}\ge\dfrac{a^2+b^2+c^2+4\left(ab+bc+ca\right)-9}{ab+bc+ca}\)

\(=\dfrac{\left(a+b+c\right)^2-9+2\left(ab+bc+ca\right)}{ab+bc+ca}=2\) (đpcm)

Bình luận (0)
Nguyễn Bá Huy h
5 tháng 6 2021 lúc 18:08

sai cơ bản rồi bạn ơi : a(a+bc)^2 không bằng dc (a^2+abc)^2

Bình luận (0)
 Khách vãng lai đã xóa
Nano Thịnh
Xem chi tiết